以下是 Python 中 组合函数的 10 个高效技巧,涵盖函数串联、柯里化、装饰器链式调用等场景,助你构建灵活的数据处理流水线:
一、基础组合技巧
1.函数管道(Pipeline)
def add(x):
return x + 2
def square(x):
return x ** 2
# 组合函数:先加后平方
pipeline = lambda x: square(add(x))
print(pipeline(3)) # (3+2)^2 = 25
2.通用组合函数
from functools import reduce
def compose(*funcs):
return reduce(lambda f, g: lambda x: f(g(x)), funcs)
# 从右向左执行:subtract -> double -> add5
func = compose(lambda x: x-3, lambda x: x*2, lambda x: x+5)
print(func(4)) # ((4+5)*2) -3 = 19
二、柯里化(Currying)组合
3.参数分步传递
from functools import partial
def power(base, exponent):
return base ** exponent
square = partial(power, exponent=2)
cube = partial(power, exponent=3)
print(square(5)) # 25
print(cube(3)) # 27
4.柯里化装饰器
def curry(func):
def curried(*args, **kwargs):
if len(args) + len(kwargs) >= func.__code__.co_argcount:
return func(*args, **kwargs)
return lambda *a, **kw: curried(*args + a, **{**kwargs, **kw})
return curried
@curry
def add(a, b, c):
return a + b + c
add_5 = add(5)
add_5_6 = add_5(6)
print(add_5_6(7)) # 18
三、装饰器组合
5.多层装饰器链
def bold(func):
def wrapper():
return "<b>" + func() + "</b>"
return wrapper
def italic(func):
def wrapper():
return "<i>" + func() + "</i>"
return wrapper
@bold
@italic
def hello():
return "Hello"
print(hello()) # <b><i>Hello</i></b>
6.带参数的装饰器组合
def repeat(n):
def decorator(func):
def wrapper(*args, **kwargs):
return [func(*args, **kwargs) for _ in range(n)]
return wrapper
return decorator
@repeat(3)
@bold
def greet():
return "Hi"
print(greet()) # ['<b>Hi</b>', '<b>Hi</b>', '<b>Hi</b>']
四、高阶函数组合
7.Map-Filter 链式处理
numbers = [1, 2, 3, 4, 5]
result = list(
map(lambda x: x * 2,
filter(lambda x: x % 2 == 0, numbers))
)
print(result) # [4, 8]
8.使用functools.reduce组合
from functools import reduce
# 将多个函数依次应用
functions = [lambda x: x+1, lambda x: x*2, lambda x: x**3]
composed = reduce(lambda f, g: lambda x: f(g(x)), functions)
print(composed(2)) # ((2^3)*2)+1 = 17
五、面向对象组合
9.类方法链式调用
class DataProcessor:
def __init__(self, data):
self.data = data
def filter(self, func):
self.data = list(filter(func, self.data))
return self
def map(self, func):
self.data = list(map(func, self.data))
return self
processor = DataProcessor([1, 2, 3, 4])
result = processor.filter(lambda x: x%2==0).map(lambda x: x*2).data
print(result) # [4, 8]
六、实用工具库
10.使用toolz库
from toolz import compose, pipe
# compose: 从右向左执行
calc = compose(lambda x: x-5, lambda x: x*3, lambda x: x+2)
print(calc(4)) # (4+2)*3-5=13
# pipe: 从左向右执行
result = pipe(4, lambda x: x+2, lambda x: x*3, lambda x: x-5)
print(result) # 同上
组合函数最佳实践
- 保持函数纯净:避免副作用,确保组合安全
- 合理命名中间函数:增强可读性
- 控制组合深度:超过5层的组合建议拆分
- 性能监控:复杂组合需用 timeit 测试
典型应用场景
- 数据清洗流水线:
clean_data = compose(
remove_outliers,
fill_missing_values,
normalize
)(raw_data)
API请求处理:
process_response = compose(
parse_json,
validate_schema,
log_result
)
图像处理链:
transform_image = compose(
resize(800, 600),
apply_filter("grayscale"),
add_watermark
)
掌握这些组合技巧后,你的代码将更模块化、可维护性更强,轻松应对复杂的数据处理需求!